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To reduce the computation time in nuclear coupled-channels calculations including 
Coulomb excitation, the applicability of Gordon’s numerical method has been in- 
vestigated to the integration range beyond the range of the nuclear potential. It turns 
out that a considerable reduction of computation time can be obtained. The larger 
the integration range and the relative wave number, pertinent to a given reaction process 
and reaction energy, the larger is this reduction. This is illustrated by two test cases 
dealing with pi and I60 scattering near the Coulomb barrier. Consequently, although 
the method is sometimes also of considerable advantage in the case of scattering of 
light particles, it seems to be especially suitable to heavy ion scattering problems. 

1. INTRODUCTION 

The inclusion of the contribution of Coulomb excitation in coupled-channels 
calculations of nuclear scattering problems often increases the computation time 
considerably. To reduce this time we have investigated the applicability of 
a method for solving systems of coupled linear second-order differential equations, 
introduced by R. G. Gordon in connection with atomic and molecular scattering 
and bound state problems [l, 21. For most collisions between atoms and ions at 
thermal energies, the de Broglie wavelength associated with the relative motion 
is short as compared to the long range of the interatomic potential. This range can 
then be divided into intervals which are sufficiently small to approximate the 
potential matrix by a linearly varying reference potential matrix and which on 
the other hand contain a sufficient number of de Broglie wavelengths. This 
enables one to write the general solution vector in e.g., the classically allowed 
region as a linear combination of two rapidly oscillating Airy functions with slowly 
varying coefficient vectors. An important advantage of Gordon’s method is 
connected with the fact that part of the numerical procedure is independent of 
energy. Apart from a possible decrease of computation time at a single scattering 
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energy [3], an additional amount of time is thus saved when the calculation is 
repeated at a slightly different energy. 

In Section 2, we give a concise formulation of Gordon’s method. In Section 3, 
the application of Gordon’s method to nuclear scattering problems is discussed. 
To study this applicability, the method has been implemented in Tamura’s code 
JUPITOR. In the resulting code JUPIGOR, the integration range is divided into 
a part up to the radius where the nuclear interaction has died out and a large 
part where only the Coulomb interaction operates. From preliminary calcula- 
tions it appeared that Gordon’s method is not efficient over the first part: the step 
size has to be taken too small. This part is therefore dealt with by a conventional 
step-by-step method. Subsequently, the remaining integration range is divided 
into steps such that the Coulomb interaction matrix is linearized, up to a few 
percent over one step. Here Gordon’s method turns out to be very efficient and 
to reduce computation time considerably. 

In Section 4, we present the results of our study on the 11.5, 16.5, 
21.5 MeV lz2Te(oI, 01’)lz2Te [ 121 and 39,44,49 MeV 5sNi(160, 160’)5sNi [ 131 inelastic 
scattering problems. Preliminary results of our investigation on the l&16 MeV 
lr4Cd(+ cL)l14Cd inelastic scattering problem have been published elsewhere [14]. 

2. A CONCISE FORMULATION OF GORDON'S METHOD 

The Schrodinger equation for the partial wave radial function in potential 
scattering is, in conventional notation, 

i-J!& + k” - g fqr) _ 41; 1) 1 z/(r) = 0. (2-l) 

This equation can be rewritten into the form 

(d2#/dr2) + {k2 - U(r)} I/ = 0. (2.2) 

Consider some interval of the integration range with the midpoint at radius F. 
Although in Gordon’s method several forms can be used for the reference potential, 
we follow him in choosing a linear one of the form 

U,(r) = U(F) + (r - F)(dU/dr)l,,, , (2.3) 

where i7 is the average value of the potential over the interval. Using (2.3) as 
potential in (2.2) gives us the Airy functions Ai and Bi as a set of two linearly 
independent solutions. As shown by Gordon these functions can be efficiently 
evaluated numerically. The general reference solution may now be written as 

hdr) = M4B + 111 a + NC=@ + r>l b, (2.4) 
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with the constants 

(2.5) 

The constant coefficients a and b are determined by conditions of continuity at 
the intervai boundaries. For instance, if they would be adapted to the value and 
derivative of the exact solution #(r) at the “left-hand” boundary rl , 

a = 4WdP + rJ1 #(rJ - 01-l N4IB + rdl q4dL (2.6a) 

b = ++ 44P + rdl #‘(rJ - AZ%@ + rdl $WL (2.6b) 

where the prime denotes differentiation with respect to the argument. 
Including the difference between the true potential and the reference potential 

one obtains corrections da(r) and db(r) to the coefficients a and b. The solution of 
the SchrBdinger Eq. (2.2) can now be approximated by the reference solution (2.4) 
plus a correction term 

#(r> = AiE4P + r>lh + Az(rH + W4P + r)f@ + &r)I, 

where the varying coefficients, to first order in [U(r) - U,(r)] are given by 

(2.7) 

da(r) = -TT Jr Bi[m(/l + r’)](U(r’) - U,,(r’)} &,(r’) dr’, 
Tz 

(2.8a) 

Lib(r) = 7~ s’ Ai[ol(/3 + r’)]{U(r’) - U,(r’)} &,(r’) dr’. 
PI 

(2.8b) 

These coefficients remain small as long as the reference potential is a good approxi- 
mation to the true potential. Thus, in the classically allowed region the solution 
(2.7) has been written as a linear combination of two rapidly oscillating Airy 
functions with slowly varying coefficients. The integrals in (2.8) can be evaluated 
analytically. 

In the case of y1 coupled equations the differential operator and k2 in (2.2) stand 
for diagonal (n x n) matrices while the potential is in general a nondiagonal (n x n) 
matrix U(r). To obtain a reference potential matrix a similarity transformation is 
performed which reduces U(r’) to diagonal form 

X-‘U(F) X = diag(h,), (2.9) 

where X is the transformation matrix and h, are the eigenvalues. In other words 
U(r) has been transformed from afree basis into a local basis such that it is diagonal. 
As reference potential matrix the following diagonal matrix is chosen 

U,(r) = [X-lo(F) X]di&g -t- (r - i’)CX-W.J/dr)l,=~ X]di,e 3 (2.10) 
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where o(F) is the average value of the potential matrix over the interval and the 
subscript “diag” means that only the diagonal elements are retained. With this 
diagonal matrix the set of reference equations becomes uncoupled and the Airy 
functions are again the linearly independent exact solutions. Writing the Airy 
functions in diagonal matrix form, the general reference solution vector in the 
local basis is given by 

+,,=Aia+Bib. (2.11) 

The constant coefficient vectors a and b are once more determined by boundary 
conditions like (2.6). The solution vector of the coupled equations may now be 
approximated by 

+ w Ai(a + ba) + Bi(b + Ab), (2.12) 

where the varying coefficient vectors are determined by 

Aa=-rr 
s 

’ Bi(U - U,} Jlo dr’, (2.13a) 
r1 

Ab = rr s T Ai{U - U,} +. dr’. (2.13b) 
*1 

The continuity condition for the solution vector in the free basis leads to a relation 
between the local solution vector in interval p and that in interval p + 1, both taken 
at the common boundary point: 

4J lo+1 = X;:J,+, = T&p. (2.14) 

Note that the following quantities are independent of energy: 

the diagonalized potential matrix X-lox, 
the transformed derivative potential matrix X-l(dU/dr) X, 
the transformation matrix T, . 

These quantities can therefore be used at other values of the energy, which turns 
out to save more than half of the computation time. 

The general solution vector can be written as a linear combination of n inde- 
pendent solution vectors. These solution vectors can be collected as the columns 
of a solution matrix Y. The component c of the vector s (solution) is denoted by 
$,s. Suppose that the components in the solution vectors are arranged in order 
of decreasing local relative kinetic energy. Integrating through a classically 
forbidden region, the components with negative kinetic energy will in general 
consist of an exponentially growing and an exponentially decreasing part. The 
former is responsible for a tendency to destroying the initially taken linear indepen- 
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dence of the solution vectors. To maintain this linear independence, the solution 
matrix can be stabilized by an unitary transformation such that the exponentially 
growing components below the diagonal with local negative kinetic energy are 
eliminated. In this way a stable solution matrix Y is obtained 

** = yy*u& 7 (2.15) 

in terms of the original solution matrix Y. The unitary matrix %! can be chosen [4] 
as a product of elementary unitary Hermitian matrices: P,P,-, . ..P. . . . . in which c 
runs over the components with local negative kinetic energy and with 

P, = I - 2w,w,+. (2.16) 

The unit column vector w, with n components can be constructed from row c of Y: 

2Kw,+ = ($,*1 , $2 ,..., cc + &G/l Ykc I, 0Y.Y (9, (2.17) 

where K and S are defined as positive constants, given by the expressions 

(2.18) 

It can easily be shown that the solution matrix Y obtained has vanishing elements 
below the diagonal in the rows c up to and including n, while the corresponding 
elements of the derivative of Y become small. If on the other hand a different choice 
is made for w, by replacing lGcs by $hs in Eq. (2.17), the abovementioned results 
for Y and Y’ are interchanged. Clearly, it is possible to eliminate the exponentially 
growing solution by means of the linear combination k,#,, + 1/I:, . The wave 
number k, is defined as (1 A, /)112 in terms of one of the negative eigenvalues h, 
in Eq. (2.9). 

In Gordon’s method [l] the solution vectors are real. In view of our preference 
for the use of complex solution vectors in Section 3, we have given the above- 
mentioned formulae in an adapted notation. Furthermore, we note that in Gordon’s 
code an approximation to [X-lo@) X]eiag in Eq. (2.10) is used. In Section 3 this 
approximation is not made. We use in Eq. (2.9) 6(r) instead of U(F). 

3. THE APPLICATION OF GORDON'S METHOD TO NUCLEAR SCATTERING PROBLEMS 

The Calculational Procedure 

The coupled-channels formalism for inelastic scattering in nuclear physics has 
been discussed extensively in the literature [5-81. This formalism leads to a set of 
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coupled differential equations for the radial wave functions u:, of the following 
form 

+i2 d2 
[ i 
__ ~- 
2m dr2 

(3.1) 

assuming a spinless projectile. Here J, 1 and I denote the total angular momentum, 
the orbital angular momentum and the spin of the target nucleus in the state 
with excitation energy el, respectively. The coupling potential is denoted by 

T/:1;w 3 the optical model potential by V”pt, whereas z1 and z2 are the charge 
numbers of the projectile and target nucleus, respectively. The total angular 
momentum J, its projection on the z-axis and the parity are good quantum 
numbers. 

If n is the number of coupled equations (3.1) for a given J, the solution satisfying 
the usual boundary conditions [6] can be written as a linear combination of IZ 
independent regular solutions z&“) 

6) J(v) 
a w1 ,z (21 + 1)1’2 8’” [$,&F, + (4,“” C&i;I1{GIJ+ iF,}], (3.2) 

V=l 

where CL and FL are the irregular and regular Coulomb wave functions and uL the 
partial-wave Coulomb phase shift. The subscript i refers to the initial channel. 
A similar set of equations holds for the derivatives of the respective functions and 
together with Eq. (3.2) they supply the matching and normalization conditions. 
The calculated matrix elements Ci,l,:,L are used in the calculation of the elastic 
and inelastic scattering amplitudes. 

To study the applicability of Gordon’s method, it has been implemented in 
Tamura’s code JUPITOR [9]. In the resulting code JUPIGOR, the integration 
range is divided into a part up to the radius where the nuclear interaction has died 
out, to be called the coupling radius reD and a large part up to the matching radius 
r, where only the Coulomb interaction operates. 

From preliminary calculations for a single channel case with a complex nuclear 
potential, it appeared that Gordon’s method is not efficient up to the radius rcD . 
The step size has to be taken too small, because the nuclear potential varies too 
fast over this range to be efficiently linearized. This part is therefore dealt with by a 
conventional method with a step size of 0. I to 0.2X [lo], where X is the de Broglie 
wavelength. In JUPITOR the step-by-step Stiirmer method is used for this purpose. 
Subsequently, we divide the remaining integration range into steps such that the 
potential is linearized up to a few per cent over one step. In the next subsection 
the procedure followed in choosing the step sizes will be dealt with. 
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Choosing Step Sizes 

Taking a perturbation potential matrix [U(r) - U,(r)] which is quadratic in r 
on the diagonal and linear in r for the off-diagonal elements, the perturbation 
integrals (2.13) can be evaluated analytically. Notwithstanding this, the calculation 
of these first-order corrections to the reference solution needs extended matrix 
multiplications. As a consequence, the calculation of the solution (2.12) requires 
about two or three times as much computational effort as does the calculation of 
the reference solution (2.11) alone. In view of this it is useful to avoid the calculation 
of the perturbation integrals in cases where this is possible. 

In Gordon’s method the step size is taken such that the perturbation integrals are 
small enough to keep the accuracy of the reference solution at some required level. 
For some potential and total angular momentum this requires the calculation of 
these integrals once; for subsequent calculations at different energies, with the 
same potential and total angular momentum, the reference solution can then be 
calculated efficiently using the same intervals and applying the energy independent 
matrices following Eq. (2.14) of Section 2. 

In our application of Gordon’s method we prefer to prescribe the step size 
without the calculation of the perturbation integrals. Over the integration range 
r,, < r < r, the potential of each uncoupled equation of set (3.1) has a radial 
dependence of the form 2qkr-l + I(1 + 1) +, where 7 is the Coulomb parameter. 
Preparatory calculations have shown that in the case of an uncoupled equation a 
sufficient accuracy of the final results can be obtained by choosing the step sizes 

r ..-- _ ..- -.. 
1 

FIG.@. The step sizes over the integration range from rCP to r, are chosen by linearizing the 
potential up to a few percent over one step. 
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such that over one step the maximal deviation of the actual potential with respect 
to the linearized potential equals a few percent of the difference between the actual 
potential and the average potential (see Fig. 1). In the case of coupled equations it 
is evident that coinciding intervals have to be chosen in all channels of the same 
coupled J set. The step size is determined according to the abovementioned method, 
applied to a similar potential form 2qkr-’ + I(1 + 1) r--2, in which now an average 
value of I over the coupled channels has been taken into account. For the test 
cases to be dealt with in Section 4 the first steps have a size of about 1 fm, the last 
few about 8 fm, depending on the value of r, . 

The radial region around the classical turning points of the individual equations 
deserves special attention, because the coupling between the equations is most 
effective here. This complication occurs for such high J values that some or all of 
the turning points are beyond rep . In the region of turning points more rigorous 
linearizing conditions are imposed. 

In this way we can work with the reference solution avoiding the calculation of 
the perturbation integrals (2.13). For subsequent calculations with the same total 
angular momentum and Coulomb interaction but with a different energy and/or 
nuclear interaction the reference solution can be evaluated using the same step 
sizes and applying again the energy independent matrices following Eq. (2.14). 

4. RESULTS AND DISCUSSION 

In this section the results of two test cases will be presented. In both cases 
the multiple excitation of a “vibrational” nucleus with one-phonon and two- 
phonon triplet states is considered. The excitation is induced by inelastic scattering 
of alpha and 160 particles, respectively, near the Coulomb barrier. The code 
JUPIGOR allows independent variation of each of the opticalpotentialdeformation 
parameters /3, involved in the coupling of the levels considered. In addition, the 
corresponding reduced electric multipole matrix elements can be introduced inde- 
pendently. In view of the purpose of this paper, however, we prefered to consider 
the following simple choice. The coupling potential has been expanded up to and 
including the first order in the deformation. A purely harmonic vibrational model 
is assumed. As a consequence, the deformation parameters poZ, &,, , pZZ and /&., , 
defined by Tamura [l I], have been taken equal, whereas /3&, = /3& = /3& = 0. 
The common ,!I value is given below. Some of the calculated C-matrix elements 
for alpha and leO scattering have been collected in Tables I and II, respectively. 
In Fig. 2 the reduction of computation time for Gordon’s method compared with 
Stdrmer’s method, is given as a function of the matching radius r, for a total 
angular momentum value J = 5. 
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Multiple Excitation of lzzTe by 11.5, 16.5, and 21.5 MeV 4He 

In this case, the Coulomb parameter and wave number are about 8.0 and 1.7, 
respectively. The optical model parameters are: Y = 250 MeV, W = 37.6 MeV, 
r, = rw = r, = 1.333 fm, a, = a, = 0.582 fm. The abovementioned deformation 
parameters are taken equal to 0.15. 

Calculations were carried out for several total angular momentum J values. 
However, we have concentrated our attention in this article on J = 5 and 30, 
because the results for these two J values turn out to be representative for the 
general properties of low and high .Z values. Furthermore, calculations were 
performed for several r, values distributed between 25 and 200 fm. It appears that 
in most practical calculations for this reaction with energies near the Coulomb 
barrier, the contribution of Coulomb excitation to the C-matrix elements can 
only be neglected if r,,, is chosen equal to about 100 fm or larger. In the following 
we shall confine ourselves to such rm values. In addition, to study the extent of 
linear independence of the solution vectors, calculations were also carried out in 
the J = 30 case for different rep values. 

In Table 1 the C-matrix elements are presented for J = 5 and 30 at laboratory 
energies of 16.5 and 21.5 MeV. The rows containing the C-matrix elements 
calculated with our code JUPIGOR are denoted by G, those with Tamura’s code 
JUPITOR by T. The results have been obtained with rcD and r, values of 15 and 
100 fm, respectively. 

First, we discuss the J = 5 (Zi = 0; Zi = 5) results for El& = 16.5 MeV 
(G-l,T-ll,T-2,T-3)andEia~=2l.5MeV(G-22,T-4).RowG-l 
contains the C-matrix elements, obtained with a step size of 0.10 fm for Stiirmer’s 
method up to r,, and 33 steps according to Gordon’s method for the remaining 
integration up to r, . The rows T - 1, T - 2, and T - 3 contain the elements 
calculated with step sizes of 0.05, 0.10 and 0.20 fm, respectively, for Stiirmer’s 
method over the whole integration range. Comparing G - 1 with T - 1, we see 
that in most C-matrix elements a 3-figure correspondence is obtained. Variations 
of of r, beyond 100 fm lead to changes in the C-matrix elements G - 1 of a 
fraction of 1 %. To get an indication of the computational efficiencies we have 
compared G - 1 with T - 2, the latter results being almost identical to T - 1. 
For r, = 100 fm this gives a reduction of the computation time by a factor of 
about 9 (Fig. 2). Row G - 2 contains the C-matrix elements obtained at 
at Eiab = 21.5 MeV using the same intervals from r,, to r, as in G - 1 and 
applying the energy independent matrices as expressed in Section 2 (following 
Eq. (2.14)), which already have been calculated for G - 1. In this way the compu- 
tation time is reduced by a total factor of about 20 (Fig. 2). As evident from 
Table I, the correspondence of G - 2 with T - 4 is satisfactory. A similar corre- 
spondence is obtained at an energy of Il.5 MeV. These results have not been 
presented. 
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Next, we discuss the J = 30 (Zi = 0; Ii = 30) results for Z&b = 16.5 MeV 
(G-33,T-5,T-66,T-7)andE~a~=21.5MeV(G-44,T-8).RowG-3 
contains the C-matrix elements obtained with a step size of 0.20 fm for 
Stormer’s part (ren = 15 fm, rm = 100 fm). This step size can be taken relatively 
large because of the monotonous behaviour of the solution vector up to ren . 
Gordon’s method needs in this case 44 steps. The rows T - 5, T - 6 and T - 7 
contain the elements calculated with step sizes of 0.05, 0.10 and 0.20 fm, respec- 
tively. Comparing these results the correspondence can be considered as satisfactory 
except for some elements, particularly the elastic channel and the Zf = 4, If = 32,34 
elements. Calculations for rm beyond 100 fm give rise to variations of the G - 3 
elements within one per cent, apart from some elements which show variations of 
a few percent. The C-matrix elements of the elastic channel and the small elements 
for I, = 4, I, = 32,34, which are not expected to contribute significantly to cross 
sections, show larger relative variations, but remain of the same order of magnitude. 

The abovementioned discrepancy in the C-matrix element of the elastic channel 
can be understood by considering that the elastic component of the solution vector 
in Eq. (3.2), divided by (21 + l)ljz exp(io,), corresponds at this high J value with 
the regular Coulomb wave function FL in about four figures. Consequently, the 
relatively small value of the C-matrix element is obtained by subtracting two 
quantities, which agree up to about four figures, and is rather sensitive to small 
variations in the elastic component of the solution vector. However, we believe 
that in most practical calculations this discrepancy has no consequences. 

The discrepancy for I, = 4, I, = 32,34 cannot be explained on this basis: the 
accuracy of the C-matrix elements of the inelastic channels is more directly related 
to the accuracy of the inelastic components of the solution vector. We believe that 
the T - 5 and T - 6 values for these C-matrix elements are too large due to a 
numerical instability in the Stormer procedure, originating from a tendency of 
the solution vectors to become linearly dependent for high angular momenta. 
To confirm this we have carried out addition calculations for different r,,, values 
( r,,, = 100 fm). 

For rcl, values up to about 15 fm, it turns out that in all C-matrix elements a 
3 a four-figure correspondence is obtained, whereas for rep = 20 fm some C-matrix 
elements begin to show agreement to within two-figures. The correspondence for 
the rep values larger than 20 fm remains acceptable, except for the Z, = 4, 
If = 32,34 elements. We note that for .Z = 30 the radial region of the classical 
turning points of the individual equations lies between r = 21 and r m 26 fm. 
For rcD = 25 fm the Z, = 4, lf = 32,34 elements still have the same order of 
magnitude, but they deviate more and more for r,, values of 30 and 35 fm, lying 
in the classically allowed region, especially when a step size of 0.05 fm is taken over 
the integration range up to r,, . In this case they become of the same order of 
magnitude as in the case T - 5 of Table I. 
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Looking at the solution vectors, it turns out that for r,, values of about 5 fm 
and larger the Stiirmer procedure generates some solution vectors, which show a 
tendency to become linearly dependent. We conclude, however, that by using 
Gordon’s stabilization transformation in the classically forbidden region for suffi- 
ciently small rCP values, this tendency can be suppressed, which then leads to 
reliable values of the C-matrix elements. 

The Stijrmer procedure used in Tamura’s code does not contain a facility to 
maintain linear independence. However, we believe that in principle it is possible 
to apply Gordon’s stabilization procedure to the Stdrmer method. In this case the 
potential matrix needs only to be diagonalized to determine the arrangement of 
the components in the solution vectors in order of decreasing relative kinetic 
energy. It is not necessary to transform the solution vectors into a local basis. 
Presumably, stabilization is only needed in a few points of the classically forbidden 
region. We have not realized these ideas in the Stijrmer procedure to stabilize the 
solution vectors below rCz, . The reason is that in general and also in our test cases, 
the linear dependence enters only for high J values. However, note that in our code 
JUPIGOR reo has been chosen such that the nuclear potential can be neglected 
outside r,, . In the first instance one may be inclined to conclude from this that it is 
less meaningful to take res smaller than 15 fm, the value of rcP which has been 
taken for the results in the table. For high J values, however, the nuclear potential 
no longer contributes significantly to the C-matrix elements. (This is already the 
case for J m 15.) In these cases a small reP value can be recommended to guarantee 
the linear independence of the solution vectors, as well as for reasons of compu- 
tational efficiency. For practical cross section calculations it is therefore 
advantageous to take r,, for the high J values considerably below 15 fm, e.g., 
1 fm, or even smaller. In JUPIGOR this is actually done. 

The C-matrix elements in row G - 4 are calculated by using the energy 
independent matrices, which already have been determined in G - 3. The corre- 
spondence with T - 8 is satisfactory, except for the abovementioned discrepancies. 
About a similar correspondence is obtained at an energy of 11.5 MeV. 

Multiple Excitation of 58Ni by 39, 44 and 49 MeV I60 

This case has a Coulomb parameter and wave number of about 21 and 4.5, 
respectively. The optical model parameters are: I’ = 22.69 MeV, rV = 1.30 fm, 
a, = 0.533 fm, W = 2.35 MeV, rw = 1.37 fm, a, = 0.375 fm, and rC = 1.25 fm 
[13]. The deformation parameters are taken equal to 0.18. The values of rcs and r, 
have again been taken as 15 and 100 fm, respectively. In Table II the C-matrix 
elements are presented as before for J = 5 and 30 at laboratory energies of 44 and 
49 MeV. 

We discuss now the J = 5 (Ii = 0, Ii = 5) results for Em = 44 MeV (G - 1, 
T - 1, T - 2, T - 3) and Elab = 49 MeV (G - 2, T - 4). Comparing G - 1 
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with T - 1 we see that in most C-matrix elements a three-figure correspondence 
is obtained. However, the comparison with T - 2 gives only small discrepancies 
and may be used to determine the reduction of the computation time. For 
rm = 100 fm this reduction is about a factor of 18 (Fig. 2). The C-matrix elements 
of row G - 2 at Elab = 49 MeV have again been obtained by applying energy 
independent matrices. The reduction of the computation time is now a total factor 
of about 42 (Fig. 2). The agreement with T - 4 is satisfactory. A similar agreement 
is evident from the results at an energy of 39 MeV, which have been left out in 
Table II. 

10 
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FIG. 2. Reduction factor of computation time for Gordon’s method compared with Stiirmer’s 
method, applied to the integration range from r,, to r, for a total angular momentum value 
J = 5. The solid and dashed curves represent the results of alpha and oxygen particles scattering, 
respectively. The dotted curves represent the results obtained by applying energy independent 
matrices already calculated for a different energy. 

Finally, considering the J = 30 (Ii = 0, Ii = 30) results for El,,0 = 44 MeV 

(G - 3, T- 5, T- 6, T- 7) and E lab = 49 MeV (G - 4, T - 8) similar 
conclusions can be drawn as in the preceding J = 30 case. Note, however, that the 
type of discrepancy observed for some C-matrix elements is absent here. 

5. CONCLUSION 

In describing a nuclear reaction process including Coulomb excitation by means 
of a coupled-channels calculation, the analysis often involves the solution of a large 
set of coupled linear second-order differential equations. It turns out that a con- 
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siderable reduction of computation time can be obtained by applying Gordon’s 
numerical method, especially if the calculation is to be carried out for various 
energies and/or optical model parameter sets. The larger the integration range and 
the relative wave number, pertinent to the reaction process, the larger is this 
reduction. Consequently, although the method is also of considerable advantage in 
some light particle scattering cases, it seems to be especially suitable to heavy ion 
scattering problems. Furthermore, a comparison of the results in this paper with 
those recently published by the present author [14], indicates that the reduction 
factor increases also with the dimension of the set of coupled equations to be solved. 
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